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Abstract

Nuclear electricity production has been constrained over the last decades by a

low availability factor of plants, about only 2/3 on average. The factors under-

lying outages are not very well understood, but research thereupon is intensi-

fying, both from an institutional and a technical perspective. This paper focuses

on unplanned outages that particularly affect the availability of nuclear power

plants adversely. We distinguish two broad types of reactors that have emer-

ged in the industry, i.e., light-water reactors and gas-cooled reactors: whereas

light-water reactors were designed to generate electricity only, gas-cooled reac-

tors (in combination with graphite moderation) have a more complex design to

obtain economies of scope between electricity generation and the extraction of

plutonium. We dispose of a unique sample of 2534 reactor-year observations be-

tween 2003 and 2015 of plants in France, Germany, Japan, Spain, Switzerland,

the UK, and the US. 15 classes of unplanned outages are considered. To iden-

tify outage-reactor relationships, machine learning algorithms for classification

are used. Results show that unplanned outages are not homogeneous among

different reactor technologies, but outage classes can be used to identify the un-

derlying reactor technologies with considerable accuracy. These results are useful

for a better understanding of nuclear technologies and their past, and perhaps

future, developments.
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1 Introduction

Nuclear power was one of the most outstanding innovations of the 21st century, and

continues to be an important energy source in many countries, such as the United

States, Japan, and in many European countries. However, nuclear power plants have

also been plagued by complex technical challenges that have limited their economic

success; overall, the availability factor of nuclear power plants in the 1970s was only

65%, i.e., not only two thirds. Clearly, a better understanding of the outages of nuclear

power plants is important.

The large number of nuclear power plants, over 600 have been built since the 1950s, and

the detailed technical information collected and published, also make it an attractive

field for data-driven research. The International Atomic Energy Agency (IAEA, Vienna,

Austria) collects and publishes a significant amount of technical data, amongst them a

very detailed analysis of outages, in not less than 15 sub-categories. Yet, a quantitative

comparative analysis of this “big data” has not yet been undertaken.

This paper applies machine learning algorithms to analyze the nature of unplanned

technical outages of nuclear power plants, and to look for a link between unplanned

outages and the respective reactor technology. Our hypothesis, based on anecdotal

evidence, is that due to different modes of operation, the unplanned outages of light-

water reactors (the “standard” and one-purpose only technology) are less important

than those of graphite-moderated gas-cooled reactors that have a more complex de-

sign. While the light water reactors were designed to generate electricity only, gas-

cooled (and graphite moderated) reactors were developed after World War II to co-

produce electricity and plutonium simultaneously to benefit from economies of scope

(Hirschhausen, 2017). We focus on unplanned outages because these are likely to reveal

insights into the underlying production technology; the structure and the large number

of available data invites to use machine learning algorithms.

There is some literature on the determinants of outages in nuclear power plants, and

it has recently attracted particular attention. Thus, Davis and Wolfram (2012) show

that most variation in reactor performance can be explained by variation in outages.

Further, due to the low variable costs of nuclear power plant operation, outages lead

to considerable losses of operating profits (Hausman, 2014). However, studies (Deutch

et al., 2003, 2009) show that outages are not sheer bad luck, but a result of effort.

And indeed, Zhang (2007) and Davis and Wolfram (2012) find considerably increa-

sed capacity factors since the 1980, i.e., a higher availability of nuclear power plants

and reduced outages. Thereby, Zhang (2007) argues that longer shutdowns (excee-
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ding half a year) are used for investments resulting in increased plant availability.1

Results by Davis and Wolfram (2012) also indicate that increasing competition, dere-

gulation, and consolidation improve plant availability. The authors argue that plant

operators’ responsibility for costs of outages incentivizes better plant management, in-

cluding especially the employment of highly qualified labor (with scale effects) as a

major determinant of outages. Lastly, studies indicate that maintenance that reduces

outages has complementaries with nuclear power plant safety (Hausman, 2014; Deutch

et al., 2003, 2009). As Hausman (2014) shows, divestiture and privatization may the-

refore increase power plant safety due to the incentives to reduce outages.

From a methodological perspective power plant outages data are challenging to ana-

lyze due to the the strong heterogeneity in outage occurence, due to a large number

of different outage types, and due to potential interactions of outage types depending

on reactor technology. Machine learning approaches are one way to overcome such

limitations and have been used more recently also in the analysis of energy generation

technologies (see, e.g., Voyant et al., 2017; Sharma et al., 2011). However, a large

number of such algorithms exists and ex-ante it is not clear which perform best (Ruiz-

Gazen and Villa, 2007; Grömping, 2012; Hu et al., 2012). This paper analyzes whether

unplanned outages are homogeneous among different types of reactor technologies.

Thereby, we argue that if reactor technology prediction from outage types is possible

with considerable accuracy, unplanned outages are not homogeneous among technolo-

gies. For this purpose, three tree-based machine learning algorithms for classification,

namely classification trees (Breiman et al., 1984), random forests (Breiman, 2001), and

boosting (Freund and Schapire, 1997; Wang, 2011), are used. Each of these methodo-

logies trains a classifier using only a subset of the data (training set). This classifier

is then used to predict the reactor type with the second part of the sample (test set),

for which the actual reactor type is assumed to be unknown. If correct predictions

with the classifiers are possible, outages are not homogeneous but are specific to the

reactor technologies. To optimize algorithms’ prediction accuracy, for each estimator a

large number simulations are carried out with varying parameter settings, accounting

for characteristics of the sample and characteristics of the classifiers.

The empirical application uses a newly collected sample of 2534 reactor-year observa-

tions of light-water (LWR) and gas-cooled reactors (GCR) in France, Germany, Japan,

Spain, Switzerland, the UK, and the US between 2003 and 2015. In total, 165 GCRs

and 2369 LWRs reactor-year observations are included and cover in total between 127

and 260 GW GW total annual gross capacity, i.e., 30 to 69% of total world wide nu-

1While investments increase current availability, power plants needs to be evaluated with lifetime
availability, as investments must be covered over the lifetime (Joskow and Parsons, 2009; Linares and
Conchado, 2013).
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clear capacity. For each observation, annual outage hours for 15 different categories

are considered and differentiate in detail the sources of outages, such as, e.g., reactor

instrumentation and control systems (I & C) or reactor cooling.

Our results show that an optimized tree can predict the reactor type from a random

outage profile with considerable accuracy and prediction accuracy lies between 75 and

82 percent, with partly very low standard deviations. This means that outage ty-

pes are not homogeneous among different reactor types, but that outage profiles vary

considerably between technologies. Methodologically, our results show that, in the gi-

ven setting, more complex algorithms do not automatically outperform their ”simpler”

counterparts. However, our results underline that a thorough exploration of potential

parameter settings is necessary to calibrate the algorithms to fully use their potential.

The remainder of the paper is structured as follows: Section 2 describes the methods

used in the paper and outlines the implementation of the methods. Section 3 descri-

bes the data. Results are presented and discussed in section 4, and section 5 concludes.

2 Nuclear Power Technologies and Outage Rates

2.1 Nuclear power technologies

Nuclear fission energy is released when an atom of uranium is split, producing several

new chemical products, radioactivity plus a large amount of energy (heat); the fast

neutrons cause a chain reaction as they hit other uranium atoms. The speed of this

chain reaction can be controlled by a “moderator” that slows down the neutrons;

moderators include graphite and light water. The spent fuel contains a large portion

of unused fuel (uranium238 and uranium235), plutonium, and other products such as

barium, strontium, and cesium. Nuclear bombs can be produced from both highly

enriched uranium and plutonium. When analyzing nuclear technologies one needs to

go back to the origins of nuclear power, i.e. the late 1940s and the 1950s. Nuclear

technologies developed after World War II had to pursue multiple objectives, and this

is still the case today for many countries. On the one hand, nuclear fission allows

generating electricity, but on the other hand, it can also be used to produce fissile

material used in nuclear bombs. The priorities of a country, therefore, determine the

choice of technologies, i.e. towards a more civilian or a more military use of nuclear

power (Hirschhausen, 2017).

Concretely, nuclear reactor technologies can be distinguished by the fuel used (either

natural uranium238 with approx. 1% of fissible U235, or enriched uranium, U238

with about 3-5% U235), and three basic combinations of moderators, that is, elements
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steering the chain reaction, and coolants, that is, elements transporting the heat to be

used for electricity production. Gas-cooled graphite moderated reactors (GCRs) are

able to produce a broad range of electricity: plutonium ratios, thanks to the possibility

to change the fuel rods in continuous mode. GCRs were the dominant technology in the

1950s, and were deployed, amongst others, in the Soviet Union, the UK, and France.

On the other hand, light water reactors are designed to produce “only” electricity,

and the extraction of plutonium is much more complicated (though still theoretically

possible). Light water reactors were developed quite some time after the GCRs, by the

United States, but have taken the lead in the meantime, as the dominant technology;

they are used, amongst others, in the United States, France, and Japan.

2.2 Capacity utilization and power plant outages

Between 1970 and 2014, about 77,044 TWh of electricity have been produced using

different nuclear reactor technologies. Surprisingly, the capacity utilization of all nu-

clear power plants between 1970 - 2014 was only 63%. In other words, about three

fifths of the available capacity of nuclear power plants was used over the years. The

mean capacity utilization ratio of different technologies provides some support to the

hypothesis of nuclear power as mainly military driven: we observe an inverse relation

between the capacity utilization and the ease of plutonium production.2 In addition to

running below capacity, the main explanation for these low figures are the high outage

rates of nuclear technology (see below for details).

Graphite and light water moderated reactors show very different characteristics, when

it comes to the capacity utilization (this observation in fact motivated our research).

Both the means and the structure of the distribution are significantly different from

each other: a t-test on the different of means has a significant result (t-value: 10.054,

p-value: 2.2e-16). The Kolmogovor-Smirnov test, too, suggests that the distribution of

the two technologies is different and that the technologies are used differently (p-value

of 0.02566).

Unused capacities seem to prevail in all nuclear technologies used, but there seems to

be a structural difference between GCRs and light water reactors. This has not only

technical relevance, but economic implications as well: a nuclear power plant constrai-

ned by outages is less profitable. An enquiry about the nature of outages therefore

seems justified.

2In fact, graphite reactors were used for electricity generation not even half of their capacity (48%),
whereas light water reactors clearly lead the pack, with 65%, just short of 2/3 of their available
capacity.
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3 Machine Learning Algorithms

To analyze the relationship of outage types and reactor technologies, this paper uses

three tree-based machine learning algorithms for classification, namely classification

and regression trees (Breiman et al., 1984), random forests (, Breiman, 2001), and

boosting (Freund and Schapire, 1997; Wang, 2011). The general idea of such supervi-

sed learning methods is to train an algorithm to predict an outcome variable Y with

a set of p features xp (x = (x1, . . . , xp)). To construct a prediction model, the training

of the algorithms uses a share of the total sample for which Y and x are observed

(training set). The derived prediction model is then used with the remaining share

of the sample (test set), for which only x is used to predict Y for this subset. The

prediction accuracy of this second stage informs about the generalizability of the first

stage results.

These statistical learning methods have several advantages over standard regression

models. First, they can easily deal with continuous, categorical, and binary data. Se-

cond, and contrary to standard regression models, the algorithms are non-parametric

and can account for nonlinearities without explicitly modeling them. Thus, the met-

hods can deal with cases in which explanatory variables are not correlated with the

observed outcome, although a relationship exists. This allows to also account for in-

terdependencies of predictors. And third, these algorithms are popular because they

can handle cases with a large number of variables and a small number of observations.

3.1 Classification Trees

Classification and regression trees (CART), first introduced by Breiman et al. (1984)

derives a decision tree as a predictive model by partitioning the sample into more

and more homogeneous groups. Figure 1 illustrates the concept of a decision tree

with a simple example containing a two-dimensional outcome (Y = 1, 2) and a two-

dimensional feature space (x = (x1, x2)). In this figure, the dataset sits above the

tree, and observations that satisfy the condition at a junction are assigned to the left

branch, others are assigned to the right branch. The sample is partitioned down to the

terminal nodes (leaves), referred to as regions, that contain predictions of the outcome

Y . Classification trees are usually using binary splitting, i.e., splitting into only two

branches at each node. This ensures that sufficient data for further splits is available

at the next node. Further, using a series of binary splits can also resemble multiway

splits, as shown in Figure 1 by the repeated use of x1 to partition the data. Once the

tree has been built, the outcome variable Y can be predicted for each observation by

following the criteria at the junction.
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Figure 1: Examplary classification tree following Friedman et al.
(2009)

Formally, a tree T = T (x; θ) is characterized by the predictor variables x, and by

θ containing split variables, cut points at the nodes, and terminal node values. To

derive the tree, CART first grows a large tree and defines the splitting criteria at

the junctions. Thereby, CART guarantees a certain number of observations in each

node and splitting only if a certain number of observation are available to split. Both

parameters influence tree complexity and are control parameters to avoid overfitting.

To determine the splitting criteria, CART seeks to minimize node impurity, whereas

impurity of a node can be evaluated with several measures, such as the misclassification

error, the Gini index, or as cross-entropy (Friedman et al., 2009). In a second step, to

derive the final tree, the initial tree is pruned, i.e., branches are cut off, if they do not

add predictive performance according to a pruning criterion. For this purpose, cost-

complexity pruning is usually used, which accounts for trade-off between a large tree

(complexity) and the goodness of fit with the data. Thereby, the pruning algorithm

considers costs of misspecification and costs of tree size weighted with a tree complexity

parameter α. For small α the costs of tree size obtain a low weight resulting in a larger

tree, and vice versa.
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3.2 Random Forests

A random forests (RF, Breiman, 2001) is a collection of multiple trees. The aim of RF

is to reduce the variance of the prediction function by reducing the correlation among

the different trees. To do so, two random factors are introduced in the construction

of a tree: first, only a subset of observations is used in each tree. And second, only a

random subset of the explanatory variables is used for the splits. As a result, the trees

are rather unstable and deliver different predictions. However, overall prediction of the

forest, derived as average over the different trees, is stable with a reduced variance.

Figure 2: Structure of random forest estimation

More formally, RF grows B (b = 1, . . . , B) trees T (x,Θb). For each b, a bootstrapped

sample Z∗b of size N is drawn from the training data. To grow T (x,Θb), at each

terminal node m variables are randomly sampled from the p predictor variables, the

best variable/split-point among the m is derived, and the node is split into two daughter

nodes. This is repeated until a minimum node size is reached. The resulting set of trees,

{Tb}B1 , is the random forest used for prediction. In a regression context, prediction is

derived as the average of the predictions of the B trees. In a classification context, the

most frequent class prediction is used (majority vote, see Friedman et al., 2009).3

While the prediction accuracy of a RF model depends on several parameters, some

issues concerning the parameter setting should be noted. First, the accuracy of RF

crucially depends on the number of variables selected for growing the tree, m. With a

3To analyze the impact of features on the outcome, variable importance measures can be used
(Grömping, 2012). However, it should be noted that the power of variable importance measures depend
on the scaling of the data (Strobl et al., 2007), which is, however, not an issue in our application.
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smaller m correlation among the B trees decreases, which also decreases the variance of

the average. However, a too small m, e.g., m = 1, would randomly select the splitting

variable without taking into account predictive power. In contrast, to large m, e.g.,

m = p, reduces the randomness of the forest. Second, the minimum node size nmin

necessary to further split a node influences the size of a tree. Increasing node size can

strengthen prediction accuracy (Segal et al., 2004), however, increasing node size will

also lead to a stronger dependence on m. Both parameters therefore need to be set

carefully and simultaneously. And third, the size of the bootstrapped subsample to

grow the tree as well as the number of trees are parameters that influence prediction

accuracy. For prediction, out of bag (OOB) samples can be used, such that prediction

for an observation uses only trees in which this observation is not contained to derive

the tree. This allows the analysis of misclassification errors with B, and training can

be terminated once the OOB error stabilizes.

3.3 Boosting

Boosting (BO) algorithms aim on combining outputs of many weak classifiers to pro-

duce a powerful committee (Friedman et al., 2009; Freund and Schapire, 1997).4 BO

grows, similarly to RF, a larger number of trees. However, contrary to RF, these trees

are not independent from each, but are sequentially generated using sequentially mo-

dified version of the data. As a result, boosted trees with very weak classifiers, such

as shallow trees (trees of low depth) or stumps (trees with only one node), can still

outperform other classification methods.

Boosting procedures try to identify a final prediction G(x) as the weighted average of

L classifiers Gl such that G(x) = sign(
∑L

l=1 γlGl(x)). Thereby, the boosting algorithm

computes the weights γ1, ..., γL with the aim to put higher weight on more accurate

predictors (compare Figure 3).

During each of the L boosting steps, the dataset is modified using weights w1, ..., wN

for each of the N observations. Initially all observations are equally weighted, i.e.,

wn = 1/N . After each evaluation of a classifier Gl−1(x) the weights are adjusted and

misclassified observations obtain a higher weight in Gl(x), while weights decrease for

correctly classified observations. As a result, Gm(x) focuses especially on those ob-

servations, for which prediction failed in the step before. Thus, the updated weights

change especially in cases when prediction accuracy is high, because more importance

is put on few observations.

4On overview of recent methodological developments of boosting algorithms is provided by Mayr
et al. (2014a) and Mayr et al. (2014b).
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Figure 3: Structure of boosting algorithms

Several parameters influence the accuracy of the resulting weighted tree. First, the

scheme used to re-weight the observations influences the results of the next tree, and

several re-weighting mechanisms are discussed in the literature (see, e.g., Freund and

Schapire, 1997; Zhu et al., 2009; Breiman, 1998). Second, the number of iterations of

the boosting procedure influences the prediction accuracy. As in each iteration per-

formance for the training set increases, a large number of iterations may overfit the

training data leading to worse prediction accuracy with the test set. Thus, the optimal

number of iterations is usually chosen to be the point at which prediction accuracy

is maximized. Alternatively, shrinking approaches limit the the learning speed of the

algorithm by slowing down the adaptation of the classifiers between iterations. This,

however, demands a larger number of iterations to obtain optimized prediction (Fried-

man, 2001). Third, boosted trees should be of right size as too large trees are computa-

tionally burdensome and degrade performance. Therefore, tree size is usually restricted

such that it allows for interaction between multiple predictor variables (increasing tree

size) while limiting maximum tree size.

The empirical analysis in this paper is based on HingeBoost as introduced by Wang

(2011). This gradient-based approach minimizes a hinge-loss function, which is ap-

proximately equal to maximizing the area under the curve (AUC), as shown by Steck

(2007). An advantage of using HingeBoost is, first, that it allows to incorporate une-

qual misclassification costs, i.e., false positive and false negative predictions can be

unequally weighted. Second, and contrary to, e.g., the widely used AdaBoost, Hinge-

Boost allows a deeper understanding of the relationship between different features to

predict the outcome (Mayr et al., 2014b).
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3.4 Implementation

As outlined above, the prediction accuracy of the three ensemble learning methods

used in this paper depend all on a large number of different parameters. To obtain

parameter settings that deliver optimal predictions, simulations are used for a large

range of parameter combinations. In total 198.000 classification trees, 9625 random

forests with up to 2800 trees each, and 123.600 boosted trees are calculated with 30

replications each. All simulations and calculations are carried out with R (R Core

Team, 2015) and the packages rpart (Therneau et al., 2015), randomForest (Liaw and

Wiener, 2002), and bst (Wang, 2013).

An overview of the methodology-specific parameters settings is provided in Table 1.5

For all three methodologies, simulations with different sizes of the training set are car-

ried out. To account for differences in the sample sizes, sampling techniques are used

to upscaling the smaller subsample and downscaling the larger subsample (Liu et al.,

2006). To account for randomness as, e.g., differences in the sampling, 30 repetitions

are calculated for each potential parameter combination. Parameter combinations le-

ading to infeasible models to estimate are dropped.

To evaluate prediction accuracy of these many trees, we simultaneously consider the

share of correct predictions in each of our technologies using two measures. Sensitivity

(Sens) gives the share of correct predictions of the subsample of GCRs, while speci-

ficity (Spec) gives the share of correct predictions of the subsample of LWRs. Mean

sensitivity Sens, mean specificity Spec, and their standard deviations (σSens and σSpec)

are then calculated for each parameter setting given the 30 replications. As potential

best predictions, we first consider only those cases that predict both technologies simi-

larly well, such that |Sens− Spec| < min(σSens, σSpec). The reported results are then

those with maximized prediction accuracy, Sens+ Spec.

4 Data

To analyze a potential relationship between unplanned outages and reactor techno-

logies, we dispose of a sample of nuclear power plants (NPPs) in France, Germany,

Japan, Spain, Switzerland, the UK, and the USA. Data has been obtained from the

International Atomic Energy Agency (IAEA) database on NPPs, the Power Reactor

Information System (PRIS, IAEA, 2013), and from IAEA’s annual reports on the ope-

rating experience with nuclear power plants (OPEX reports, IAEA, 2016). Table 2

provides summary statistics for the aggregate sample. Detailed descriptive statistics

5Not-listed parameters follow the default values of the used software packages.
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Parameter Simulated Range

CART

Min. number of obs. to split [3,5,. . . ,39]
Min. number of obs. in leaves [1,3,. . . ,19]
Tree complexity [10−5, 10−4,. . . ,10−1]
Training set size upsampling [100,200,. . . ,1100]
Training set size downsampling [10,30,. . . ,190]
Share of GCRs [0.1,0.2,. . . ,0.8]

RF

Number of trees [200,300,. . . ,2800]
Number of candidates at each split [1,2,. . . ,7]
Class priors [16,32,. . . ,240]
Max. number of terminal nodes [2,4,. . . ,14]
Subsample size upsampling [50,125,. . . ,1100]
Subsample size downsampling [50,75,. . . ,200]
Share of GCRs [0.1,0.2,. . . ,0.8]

BO

Iterations [10,20,. . . ,100]
Training set size upsampling [300,600,. . . ,1200]
Training set size downsampling [50,100,. . . ,300]
Tree complexity [0.001,0.01,0.1]
Share of GCRs [0.2,0.4,0.6]
Shrinkage Parameter [0.1,0.2,. . . ,0.9]
Missclassification cost parameter [0.3,0.4,. . . ,0.7]

Table 1: Simulated parameter settings
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are provided in the appendix.

In total, the sample consists 2534 reactor-year observations between 2003 and 2015

and includes 271 different reactors. The sample is unbalanced and contains 87 to 170

observations in every year. It accounts for shutdowns of NPPs in Japan (after the

Fukushima Daichii incident) and in Germany in 2012. In total, between 127 and 260

GW gross capacities are covered in each year, representing between 30 and 68% of total

capacities of worldwide nuclear power plants. 165 reactor-year observations are GCRs,

while the remaining major share of observations are LWR. All GCRs are located in UK.

Except for Japan’s NPPs, GCRs show a comparably low average availability during

the observation period.

To separate different sources of outages, we differentiate outage categories following the

IAEA classification of the operating experience with nuclear power plants. This allows

to separate external reasons for outages, i.e., outages that are not under control of

the management, from unplanned outages due to failures coming from the NPP itself.

15 different categories of unplanned outages are considered and detailed definitions

of the categories are in the appendix, Table 8. Descriptive statistics of the different

outage types separate for LWRs and GCRs are given in Table 3. Generally, data shows

that only about 7% (LWRs) to 10% (GCRs) of the NPPs have neither a planned nor

an unplanned outage throughout a year. While planned outages are nearly of iden-

tical occurrence, unplanned outages have generally a higher duration among GCRs.

However, the share of NPPs with no planned outages is about 30% of the GCRS,

while only about 19% of the LWRs. On the contrary, the share of GCRs without any

unplanned outages is already considerably smaller (19%) than for the LWR category

(30%). Further, data indicates reactor-technology specific accumulation of outages in

two categories, with Reactor & Accessories and Steam Generation showing the most

severe discrepancies. However, the different outage categories show overall very low

correlations, independent from the reactor type. Similarly, the data also does not indi-

cate noteworthy correlations between planned outages and different types of unplanned

outages or total unplanned outages of a plant.

For the estimation, only observations with non-zero outages are used. This reduces the

size of the total sample to 1544 reactor-year observations, with 119 GCRs and 1455

LWRs. Further, the model specification of the machine learning algorithms uses the

reactor types as categorical variable to be predicted, with the category LWR containing

BWRs (boiling water reactor) and PWR (pressurized water reactors). The features of

the machine learning models, i.e., the outages, are incorporated as outage shares rela-

tive to the hours per year (controlling for leap years), corrected for planned outages,
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and corrected for other outages. These shares are calculated as

shareOutagept =
Outagept

Hourst − plannedOutagest −
∑

q 6=pOutageq

with all variables measured in hours. The rational behind using these corrected shares

is the following: First, controlling for planned outages controls also for the (country-

specific) regulatory environment. Second, during times in which an NPP has a planned

outage, it cannot have an unplanned outage. Third, a plant that is shutdown due to

an outage of category q cannot shut down for another reason. Thus, the estimation

uses only the shares of the different outage categories relative to the amount of time

an outage of a certain category can actually occur.

CHE ESP FRA GER JAP UK USA

#NPPs 5 9 58 17 55 23 104
GCR obs. 0 0 0 0 0 165 0
LWR obs. 65 106 696 136 426 9 931
Avg. capacity (MW) 697.0 963.5 1135.9 1307.3 892.4 614.6 1049.0
Avg. availability (%) 88.4 86.9 78.2 81.6 64.3 67.2 90.0
Avg. age 34.2 26.3 23.9 27.2 22.4 29.3 30.7

Table 2: Aggregate descriptive statistics 2003 - 2015
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GCR LWR
Outage category Mean Max #0 Mean Max #0

Total Planned 1087.05 8784 32 1075.32 8784 724
Total Unplanned 1210.30 8784 56 430.24 8784 412

Reactor & Accessories 277.39 8784 148 34.18 8784 2190
Reactor I&C 15.80 386 147 23.24 4155 2001
Reactor Auxiliary 7.19 744 160 16.10 7392 2156
Safety Systems 1.48 144 163 10.86 3357 2209
Reactor Cooling 28.36 1374 155 39.67 5976 2128
Steam Generation 241.49 4368 131 20.53 8046 2227
Safety I&C 1.44 237 164 0.33 486 2359
Fuel & Storage 79.38 3810 145 3.13 1200 2242
Turbine & Auxiliaries 54.90 1217 137 42.34 8453 1759
FeedWater 38.65 1042 135 23.82 8784 1996
Circulating Water 65.81 4332 151 3.72 1296 2304
All others I&C 12.80 2112 164 1.90 789 2290
Main Generator 52.88 816 139 35.10 3716 2045
Electrical Power Supply 65.48 1449 133 31.41 7297 2050
Others 6.95 864 161 29.99 2099 2066

Table 3: Descriptive statistics: Outages in h per outage category
per year, 2003 - 2015

5 Results

5.1 Simulation results

The results of the simulations are summarized as sensitivity/specificity plots for all

three methods in Figure 4. In each of these plots, one dot indicates specificity (cor-

rect predictions of LWRs) and sensitivity (correct predictions of GCRs) averaged over

the 30 replications for this parameter settings. Thus, an optimal prediction would be

located in the top-right corner, in which all observations of the test set are correctly

predicted with the classifier based on the training set.

The plots show some interesting patterns for each methodology. For CART, we see that

prediction of LWRs is generally better than the prediction of GCRs. However, pre-

diction accuracy exceeding 75% accuracy for both technologies is possible with large,

complex trees with a high (bootstrapped) share of GCRs to outweigh the skewed dis-

tribution of the two reactor types. Thus, upscaling of the smaller subsample leads to

generally improved results. Further, the plots indicate that under certain parameter

settings, optimal predictions of both technologies are possible, i.e., specificity or sen-

sitivity equal 1. Thereby, an optimal prediction of LWRs is likely with settings that
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favor the larger subsample, e.g., if LWRs are overrepresented in the sample (i.e., there

is a low share of GCRs in the training set), or if the tree demands final nodes with

many observations. On the contrary, GCR’s can only be only optimally predicted, if

training sets are very small and their share in the training set is greater than 50%.

For random forest, Figure 4 indicates a similar distribution of potential specificity and

sensitivity values. However, compared to CART, slightly better predictions of both

technologies are possible, which, additionally possess considerably smaller variance.

Generally, as expected, prediction accuracy increases with the number of trees in the

forest, although these gains are already small with more than 1000 trees. However, no-

teworthy gains in terms of reduced standard deviation can still be achieved afterwards.

Also more complex trees (increased number of maximum final nodes), with a larger

set of candidates at each split can lead to gains in prediction accuracy, while no con-

siderable increase in terms of variance can be observed. Similar to CART, prediction

accuracy improves for upsampling of the smaller subsample. For RF, the results also

underline the importance of optimized parameter settings: among the 100 best pre-

dictions (in terms of the sum of specificity and sensitivity) stem from only 13 different

scenarios with slight variations in only one parameter.

For boosting, result show different patterns compared to CART and random forests.

Figure 4 indicates boosting predicts typically the larger subsample of LWRs much more

accurately for the the chosen parameter settings.6 An analysis of the impact of the

different parameters on predictions shows a complex interplay of the different determi-

nants. We observe that an increasing training set size improves prediction accuracy.

However, an increase of training set size with bootstrapped upsampling generally only

increases predicitve power regarding LWRs, even with a high share of GCRs. Thus,

prediction accuracy seems to be already limited by sample properties. The parameter

to set costs for misspecification has the expected effect, and higher costs for misclassi-

fying one technology increases its share of correct predictions. On the contrary, we find

only small effects of decreasing the shrinkage parameter and also no considerable effect

of using a very large number of trees. With this respect, boosting seems to obtain sta-

ble results fairly quickly, whereas their quality depends crucially on the characteristics

of the training set, leading also to partially considerable variance of the results.

To summarize, the simulation results underline the importance of optimal parameter

settings to obtain classifiers with predictive power. Each methodology needs calibra-

tion and different parameters need to be set carefully, and simultaneously. In term of

prediction accuracy, our results suggest that all methods can perform well. However,

random forests are preferred if results with low variances are favored.

6Extreme values for misclassification have not been simulated, but may also allow to correctly
predict only GCRs correctly.
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Figure 4: Simulation results: Sensitivity and specificity for CART
(top), RF (center), BO (bottom)
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5.2 Best predictions

The best predictions of the three machine learning algorithms are collected in form

of confusion matrices in Table 4. Best predictions satisfy the criteria outlined above:

as we aim on simultaneously predicting both reactor types, only those predictions are

taken into account, for which |Sens−Spec| < min(σSens, σSpec). The confusion matrix

reads as follows: the main diagonal of each matrix contains the shares of correctly

identified reactor types from the test set, i.e., GCRs that are predicted to be GCRs,

and LWRs correctly identified as LWRs (specificity and sensitivity). On the contrary,

the counterdiagonal contains the missclassified cases.

For CART, Table 4 shows prediction accuracies between 75 and 74% for LWRs and

GCRs for both sampling techniques, meaning that based on the tree derived with the

training set, observations from the test set are correctly identified in about three out

of four cases. Thus, a fairly accurate prediction of reactor technologies on the basis of

outage categories is possible already with simple classification trees, however, also with

a certain variation in the accuracy. The table also indicates that the upsampling of the

smaller GCR category helps correctly identifying both technologies, although gains are

small. The parameters of the optimal trees, given in Table 5, indicate identical tree

complexity independent of the sampling methods. However, due to the much larger

number of observation under upsampling, considerably larger leaf and split sizes are

necessary. Further, with upsamling the share of GCRs in the training set is upsampled

to exceed LWR frequence considerably.

For RF with upsampling, models show a predictive power comparable to the simple

classification trees, while results under downsampling are comparably worse compa-

red to CART. The results using upsampling are, however, due to the large number of

replications with additional randomization coming from subsampling and random vari-

able selection, much more robust than results obtained with CART and show strongly

reduced variance. This variance reduction also explains that random forests do not

outperform classification trees: by introducing a variance-based threshold for the se-

lection of the best predictions, a considerable number of repetitions has been dropped.

As a result, for CART around 5% of all simulated trees are considered to identify the

best prediction, compared to only 1% of the simulated settings with random forest.

This result does not hold under downsampling, in which the results indicate deterio-

rating performance with increased variance. Table 5 indicates that under upsampling

results favor a large number of trees, which also reduce variance. On the contrary, with

downsampling, optimal results are obtained already with small forests.

For boosting with downsampling results are summarized in the Table 4, while no pre-

dictions with upsampling fulfill the criterion of equally predicting both reactor techno-
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logies. As outlined above, we observe that in upsampled settings LWRs are generally

better predicted with small variance, while accuracy for GCRs is low, leading to cases

that violate the criterion despite the large variance of the results. Downsampling re-

sults, however, indicate on average a better prediction accuracy compared to all CART

and random forests, with, however, considerably higher variance as the other two met-

hods. The results indicate that prediction accuracy depends especially on the sample

size of the smaller subsample, while the combination of many parameters settings al-

low to achieve high prediction accuracy. This is an interesting finding because boosting

algorithms were especially developed for weak classifiers and our results support this

underlying idea. However, our results indicate that also more complex classifiers (more

complex trees) can lead to similar predictions and, if computational power is not a

burden, might avoid oversimplification.

Upsampling Downsampling
GCR LWR GCR LWR

CART

P
re

d
ic

ti
on GCR

76.31% 23.02% 76.49% 26.24%
(6.30 %) (4.72 %) (12.19 %) (4.34 %)

LWR
23.69% 76.98% 23.51% 73.76%

(6.30 %) (4.72 %) (12.19 %) (4.34 %)

RF

P
re

d
ic

ti
on GCR

75.69% 24.13% 68.80% 27.56%
(1.27 %) (1.88 %) (5.87 %) (9.01 %)

LWR
24.31% 75.87% 31.20% 72.44%

(1.27 %) (1.88 %) (5.87 %) (9.01 %)

BO

P
re

d
ic

ti
on GCR

NA NA 83.33% 16.99%
(0.00 %) (0.00 %) (27.33 %) (2.03 %)

LWR
NA NA 16.67% 83.01%

(0.00 %) (0.00 %) (27.33 %) (2.03 %)

Table 4: Best predictions
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Parameter Upsampling Downsampling

CART

Min. number of obs. to split 35 3
Min. number of obs. in leaves 13 3
Tree Complexity 0.01 0.01
Training set size 1060 190
Share GCR in training set 70% 50%

RF

Number of trees 2400 200
Number of candidates at each split 5 5
Class priors 216 1
Max. number of terminal nodes 8 4
Subsample size 950 200
Share of GCRs 50% 10%

BO

Iterations 20
Training set size upsampling 275
Training set size downsampling 200
Complexity 0.01
Share of GCRs 50 %
Shrinkage Parameter 0.3
Missclassification cost parameter 0.4

Table 5: Parameter settings for optimal prediction accuracy
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5.3 Classification threshold analysis

In the next step, we analyze the sensitivity of our results with respect to the cho-

sen classification threshold. This threshold determines the necessary probability to be

classified as GCR given the features (outages) of an observation and the classifier. By

sliding this threshold, additional gains in prediction accuracy are possible, especially

in cases with severe sample imbalances as in our case (Ruiz-Gazen and Villa, 2007;

Lemmens and Croux, 2006).

To implement these models, we replicate the simulations with a subset of the parame-

ter settings used before accounting for sample skewness using up- and downsampling

and stochasticity using 30 replications per parameter setting.7 In these simulations,

the classification threshold is chosen ex-post such that it optimizes prediction accuracy

for the binary classification GCR/LWR for a given parameter setting. For CART and

boosting, the sliding threshold is implemented to optimize prediction with the trai-

ning set for the given tree. This threshold is then applied to the test set to evaluate

prediction accuracy. For random forests, we chose the optimized threshold using the

in-bag observations, which is then applied to the out-of bag sample.

Figure 5 shows the sensitivity / specificity plots for the three methodologies with flexible

classification thresholds. The figures show that with the sliding threshold simultane-

ous prediction of both technologies increases, while cases with maximized prediction of

only one technology do not occur. Further, the plots already indicate that prediction

accuracy can increase. Especially for boosting we observe that results with sliding

threshold favor much more the prediction of the GCR class.

The best predictions following our criterion to simultaneously predict both technolo-

gies are summarized in Table 6. For CART, we observe an slight increase of prediction

accuracy in the upsampled cases, while prediction accuracy decreases to the standard

settings with downsampling, but remains in one standard deviation of the results wit-

hout the flexible threshold. For random forest, our results show a strong increase of

prediction accuracy with both upsampling and downsampling. In both settings, both

technologies are predicted with more than 82% accuracy, indicating that a distinction

of technologies based on outages is possible. Finally, with boosting results using downs-

ampling indicate again prediction accuracy of around 80%, with, however, considerable

variance. The reported upsampling result is only one of two parameter settings under

which the criterion is fulfilled, which clearly results from the large standard deviations.

We therefore conclude that upsampling in boosting algorithms does not improve pre-

7198.000 CART trees, 15.000 random forests, and 123.600 boosting procedures are estimated with
30 replications each. Parameter settings are motivated from the first part of the study with fixed
thresholds.
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Upsampling Downsampling
GCR LWR GCR LWR

CART

P
re

d
ic

ti
on GCR

76.31% 23.02% 76.32% 25.71%
(6.30 %) (4.72 %) (12.27 %) (4.41 %)

LWR
23.69% 76.98% 23.68% 74.29%

(6.30 %) (4.72 %) (12.27 %) (4.41 %)

RF

P
re

d
ic

ti
on GCR

0.00% 15.29% 82.86% 15.87%
(2.61 %) (2.81 %) (3.27 %) (2.76 %)

LWR
16.53% 84.71% 17.14% 84.13%

(2.61 %) (2.81 %) (3.27 %) (2.76 %)

BO

P
re

d
ic

ti
on GCR

43.44% 27.65% 83.33% 20.05%
(30.03 %) (36.09 %) (30.32 %) (4.14 %)

LWR
56.56% 72.35% 16.67% 79.95%

(30.03 %) (36.09 %) (28.16 %) (5.96 %)

Table 6: Best predictions with flexible threshold

diction accuracy with the data used in this paper.

The impact of the parameter settings is very similar to the results presented in sections

5.1 and 5.2. Moreover, the effect of the parameters aiming on reducing the impact of

sample size disparities, namely class weights for random forests and the misclassifica-

tion cost parameter for boosting have the same effect using the flexible threshold as

before. Since we observe a considerable increase in prediction accuracy especially for

random forest a combination of different approaches to tackle such sample issues seems

to be useful.
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Figure 5: Sensitivity and specificity with flexible threshold for
CART (top), RF (center), BO (bottom)
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6 Conclusion

Nuclear power is fascinating, but not an easy technology, and attempts to generate

nuclear electricity economically, i.e. competitive with other technologies, have been

unsuccessful thus far. In particular, nuclear reactors feature low availability rates

(∼2/3), so that a better understanding of outage times is necessary. To work in this

direction, this paper analyzes the link between unplanned outages and nuclear power

plants’ reactor technologies. We focus on two stylized technologies that have emerged

after World War II, i.e. light-water reactors (LWR) and gas-cooled reactors (GCR). We

hypothesize that outage profiles can be used to predict reactor technologies if outages

are heterogeneous among reactor technologies. Based on a sample of 2534 reactor-year

observations of light-water and gas-cooled reactors between 2003 and 2015, 15 different

categories of unplanned outages are analyzed with three tree-based methods, namely

classification trees, random forests and boosting. For calibration, a large number of

simulations with varying parameter settings are carried out. Different sampling appro-

aches and analyses of classification thresholds are carried out to overcome limitations

of an unbalanced sample. To obtain optimal predictions, a strict criterion is derived

to focus on the simultaneous prediction of both reactor technologies.

The paper provides two results, and suggests further research: On nuclear technolo-

gies, it suggests that there is indeed a structural difference between the two big types of

reactors, as indicated by the different origins of unplanned outages. All three methods

indicate that a prediction of a reactors’ technology using only the outage profile in

one year is possible with considerable accuracy. With fixed classification thresholds,

our results indicate that well-calibrated trees predict the correct technology with more

than 83% using boosting, but already less complex classification trees and random

forests obtain accuracies exceeding 75%. A tuning of classification thresholds further

increased these accuracies especially for random forests.

From a methodological perspective, our results also underline the importance of a

precise calibration of the three used machine learning algorithms. The results of the

calibration process show the large range of potential classifiers that can be obtained,

but indicate also considerable interdependencies of different parameters. Therefore,

our results emphasize that for optimal predictions the parameter space needs to be

explored carefully, interdependencies of parameters needs to be considered, and the

structure of the data needs to be taken into account. Using a clear criterion to judge

best predictions thereby helps to evaluate parameter settings and can give a clear

guideline for calibration of methodologies.
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7 Appendix

7.1 Descriptive statistics
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Country Year GCR PWR BWR
Avg.
avail.

Total
capacity

Reactor
age (avg.)

Planned
outages

Unplanned
outages

CHE 2003 0 3 2 0.92 3333 28.20 520.20 20.40
CHE 2004 0 3 2 0.91 3333 29.20 658.60 39.20
CHE 2005 0 3 2 0.84 3333 30.20 615.00 751.20
CHE 2006 0 3 2 0.93 3333 31.20 526.40 0.00
CHE 2007 0 3 2 0.93 3333 32.20 506.80 22.00
CHE 2008 0 3 2 0.93 3333 33.20 573.80 4.20
CHE 2009 0 3 2 0.92 3333 34.20 626.00 20.00
CHE 2010 0 3 2 0.89 3333 35.20 887.60 19.20
CHE 2011 0 3 2 0.88 3333 36.20 939.40 33.40
CHE 2012 0 3 2 0.86 3333 37.20 781.40 353.60
CHE 2013 0 3 2 0.88 3333 38.20 762.40 190.40
CHE 2014 0 3 2 0.92 3333 39.20 545.00 89.00
CHE 2015 0 3 2 0.69 3333 40.20 1678.80 969.20

ESP 2003 0 7 2 0.89 7708 21.89 593.11 164.22
ESP 2004 0 7 2 0.92 7708 22.89 353.33 175.78
ESP 2005 0 7 2 0.84 7708 23.89 672.78 462.22
ESP 2006 0 7 2 0.89 7708 24.89 412.33 327.89
ESP 2007 0 6 2 0.82 7567 24.25 786.50 543.75
ESP 2008 0 6 2 0.87 7567 25.25 390.75 550.50
ESP 2009 0 6 2 0.78 7567 26.25 1238.50 437.75
ESP 2010 0 6 2 0.90 7567 27.25 421.00 230.88
ESP 2011 0 6 2 0.84 7567 28.25 873.25 275.38
ESP 2012 0 6 2 0.89 7567 29.25 656.88 128.12
ESP 2013 0 6 2 0.87 7567 30.25 1140.12 231.50
ESP 2014 0 6 2 0.88 7567 31.25 692.71 214.86
ESP 2015 0 6 1 0.88 7121 30.57 775.43 73.29

FRA 2003 0 58 0 0.79 63260 18.63 1044.52 353.25
FRA 2004 0 58 0 0.81 63260 19.63 965.86 388.12
FRA 2005 0 58 0 0.81 63260 20.63 937.27 218.12
FRA 2006 0 58 0 0.81 63260 21.63 915.88 346.34
FRA 2007 0 58 0 0.78 63260 22.63 1049.02 612.98
FRA 2008 0 58 0 0.78 63260 23.63 961.27 701.24
FRA 2009 0 58 0 0.72 63260 24.63 1043.42 1082.76
FRA 2010 0 58 0 0.75 63260 25.63 959.80 806.31
FRA 2011 0 58 0 0.79 63130 26.43 1087.93 565.98
FRA 2012 0 58 0 0.76 63130 27.43 920.50 758.31
FRA 2013 0 58 0 0.75 63130 28.43 1118.12 757.98
FRA 2014 0 58 0 0.79 63130 29.43 1240.00 351.48
FRA 2015 0 58 0 0.78 63130 30.43 1245.88 366.86

GER 2006 0 11 6 0.89 20496 24.41 664.12 118.06
GER 2007 0 11 6 0.75 20496 25.41 1519.76 577.76
GER 2008 0 11 6 0.78 20496 26.41 581.24 1177.41
GER 2009 0 11 6 0.72 20496 27.41 1320.88 1101.18
GER 2010 0 11 6 0.75 20496 28.41 980.41 1086.00
GER 2011 0 11 6 0.79 20496 29.41 466.47 1917.24
GER 2012 0 7 2 0.90 12074 26.67 609.00 187.44
GER 2013 0 7 2 0.89 12074 27.67 673.11 270.11
GER 2014 0 7 2 0.89 12074 28.67 583.33 285.44
GER 2015 0 7 2 0.89 12074 29.67 668.38 91.25
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Country Year GCR PWR BWR
Avg.
avail.

Total
capacity

Reactor
age (avg.)

Planned
outages

Unplanned
outages

JAP 2003 0 23 29 0.59 44283 19.46 2046.33 1641.69
JAP 2004 0 23 30 0.69 45460 19.98 1518.19 1212.88
JAP 2005 0 23 32 0.68 47635 20.23 2132.29 695.82
JAP 2006 0 23 32 0.69 47635 21.23 2025.58 651.49
JAP 2007 0 23 32 0.63 47635 22.23 2120.07 734.67
JAP 2008 0 23 32 0.58 47635 23.23 3308.13 286.65
JAP 2009 0 24 32 0.63 48501 23.81 2505.35 338.89
JAP 2010 0 24 30 0.68 47180 24.47 2162.11 588.08

UK 2004 26 1 0 0.70 11359 28.78 1655.75 490.50
UK 2006 22 1 0 0.67 11167 28.00 1321.61 1011.00
UK 2007 18 1 0 0.57 10297 26.37 1344.42 1596.53
UK 2008 18 1 0 0.52 10297 27.37 1458.71 2390.94
UK 2009 18 1 0 0.69 10297 28.37 1163.26 772.68
UK 2010 18 1 0 0.66 10297 29.37 602.63 1702.74
UK 2011 18 1 0 0.70 10297 30.37 906.37 998.05
UK 2012 17 1 0 0.76 10080 30.67 682.22 754.56
UK 2013 15 1 0 0.79 9373 30.12 686.88 643.75
UK 2014 15 1 0 0.69 9373 31.12 1074.25 1090.19
UK 2015 14 1 0 0.76 8883 31.33 1095.13 291.20

USA 2006 0 69 35 0.91 103366 26.66 661.16 118.06
USA 2007 0 69 35 0.92 103366 27.66 553.83 121.07
USA 2008 0 69 35 0.91 103366 28.66 639.47 116.34
USA 2009 0 69 35 0.90 103366 29.66 648.77 213.92
USA 2010 0 69 35 0.91 103366 30.66 642.35 116.06
USA 2011 0 69 35 0.89 103366 31.66 851.17 90.65
USA 2012 0 69 35 0.86 103366 32.66 1004.80 225.44
USA 2013 0 69 35 0.88 103366 33.66 624.98 268.48
USA 2014 0 65 35 0.92 99790 34.65 616.38 86.52
USA 2015 0 65 34 0.92 99185 35.58 587.83 114.69

Table 7: Annual country-specific descriptive statistics
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Outage Category Plant systems affected

Reactor and Accessories Reactor vessel and main shielding (including penetrations and
nozzles), reactor core (including fuel assemblies), reactor inter-
nals (including steam separators/dryers - BWR, graphite, pres-
sure tubes), auxiliary shielding and heat insulation, moderator
and auxiliaries (PHWR), annulus gas system (PHWR/RBMK),
none of the above systems

Reactor I&C Systems Control and safety rods (including drives and special power
supply), Neutron monitoring (in-core and ex-core), reactor in-
strumentation (except neutron), reactor control system, Reac-
tor protection system, Process computer, Reactor recirculation
control (BWR)

Reactor Auxiliary Systems Primary coolant treatment and clean-up system, Chemical and
volume control system, Residual heat removal system (inclu-
ding heat exchangers), Component cooling system, Gaseous,
liquid and solid radwaste treatment systems, Nuclear buil-
ding ventilation and containment inerting system, Nuclear
equipment venting and drainage system (including room floor
drainage), Borated or refuelling water storage system, CO2
injection and storage system (GCR), Sodium heating system
(FBR), Primary pump oil system (including RCP or make-up
pump oil), D2O leakage collection and dryer system (PHWR),
Essential auxiliary systems (GCR)

Safety Systems Emergency core cooling systems (including accumulators and
core spray system), High pressure safety injection and emer-
gency poisoning system, Auxiliary and emergency feedwater
system, Containment spray system (active), Containment pres-
sure suppression system (passive), Containment isolation sy-
stem (isolation valves, doors, locks and penetrations), Contai-
nment structures, Fire protection system, None of the above
systems

Reactor Cooling Systems Reactor coolant pumps/blowers and drives, Reactor coolant pi-
ping (including associated valves), Reactor coolant safety and
relief valves (including relief tank), Reactor coolant pressure
control system, Main steam piping and isolation valves (BWR)

Steam Generation Systems Steam generator (PWR), boiler (PHWR, AGR), steam drum
vessel (RBMK, BWR), Steam generator blowdown system,
Steam drum level control system (RBMK, BWR)

Safety I&C Systems (ex-
cluding reactor I&C)

Engineered safeguard feature actuation system, Fire detection
system, Containment isolation function, Main steam/feedwater
isolation function, Main steam pressure emergency control sy-
stem (turbine bypass and steam dump valve control), Failed
fuel detection system (DN monitoring system for PHWR), RCS
integrity monitoring system (RBMK)
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Outage Category Plant systems affected

Fuel Handling and Storage
Facilities

On-power refuelling machine, Fuel transfer system, Storage fa-
cilities, including treatment plant and final loading and cask
handling facilities

Turbine and auxiliaries Turbine, Moisture separator and reheater, Turbine control val-
ves and stop valves, Main condenser (including vacuum sy-
stem), Turbine by-pass valves, Turbine auxiliaries (lubricating
oil, gland steam, steam extraction), Turbine control and pro-
tection system

Feedwater and Main Steam
System

Main steam piping and valves, Main steam safety and relief
valves, Feedwater system (including feedwater tank, piping,
pumps and heaters), Condensate system (including condensate
pumps, piping and heaters), Condensate treatment system

Circulating Water System Circulating water system (pumps and piping/ducts excluding
heat sink system), Cooling towers / heat sink system, Emer-
gency ultimate heat sink system

Miscellaneous Systems Compressed air (essential and non-essential / high-pressure and
lowpressure), Gas storage, supply and cleanup systems (nitro-
gen, hydrogen, carbon dioxide etc.), Service water / process
water supply system (including water treatment), Deminerali-
zed water supply system (including water treatment), Auxili-
ary steam supply system (including boilers and pressure con-
trol equipment), Non-nuclear area ventilation (including main
control room), Chilled water supply system, Chemical additive
injection and makeup systems, Non-nuclear equipment venting
and drainage system, Communication system

All other I&C Systems Plant process monitoring systems (excluding process compu-
ter), Leak monitoring systems, Alarm annunciation system,
Plant radiation monitoring system, Plant process control sy-
stems, None of the above systems

Main Generator Systems Generator and exciter (including generator output breaker), Se-
aling oil system, Rotor cooling gas system, Stator cooling water
system, Main generator control and protection system

Electrical Power Supply
Systems

Main transformers, Unit self-consumption transformers (sta-
tion, auxiliary, house reserve etc.), Vital AC and DC plant po-
wer supply systems (medium and low voltage), Non-vital AC
plant power supply system (medium and low voltage), Emer-
gency power generation system (e.g. emergency diesel genera-
tor and auxiliaries), Power supply system logics (including load
shed logic, emergency bus transfer logic, load sequencer logic,
breaker trip logic etc.), Plant switchyard equipment

Table 8: Outage category definition
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